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Abstract-For the velocity and temperature distributions in the middle portion of a long horizontal pipe 
with adiabatic walls and differentially heated ends, the three-term expansion of Bejan and Tien is extended to 
47 terms in the Rayleigh number. We examine the series for Nusselt number, and extend its utility by 
analyzing its singularities. We also estimate the effect of the ends by matching the first-order core solution 

with an integral solution for the flow and temperature in the end region. 
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NOMENCLATURE 

wall thermal resistance parameter, 
equation (7); 
coefficients, equation (21); 
coefficients, equation (26) ; 
gravitational acceleration [m sm2] ; 
coefficients, equation (25); 
fluid thermal conductivity 
[Wm-‘K-l]; 

constants of zeroth-order solution, 
equation (14d); 
pipe length [m] ; 
Nusselt number, equation (17) ; 
Prandtl number [v/a] ; 
dimensionless pressure, equation 

(3c); 
pressure [N me21 ; 
convective heat flux [W] ; 
dimensionless radial position, equa- 
tion (3a); 
radial position [m] ; 
radius [m] ; 
Rayleigh number, equation (3d); 
wall thickness [m] ; 
dimensionless temperature, equa- 
tion (3~); 
temperature [K] ; 
cold and warm end temperatures ; 
dimensionless radial, circumferen- 
tial, axial velocities, equation (3b); 
radial, circumferential, axial velo- 
cities [m s-l]; 
dimensionless axial position, equa- 
tion (3a); 
axial positions [m]. 

t Present address: Department of Mechanical Engineer- 
ing, Stanford University, Stanford, CA 94305, U.S.A. 

Greek symbols 

a, fluid thermal diffusivity [m2 s-l] ; 
A coefficient of volumetric thermal ex- 

pansion [K-l]; 
0, angular position ; 
V, kinematic viscosity [m2 s- ‘I; 
P> density [kg mm31 ; 
*, stream function, equation (9). 

Subscripts 

0, zeroth-order approximation; 
n, nth order approximations. 

1. INTRODUCTION 

COMPIJTER extension of perturbation series in fluid 
mechanics has extensively been studied in recent years 
[l-3]. All the work indicates that this technique is able 
to solve a variety of problems in fluid mechanics. In 
general, this technique consists of three procedures. 
First, form a perturbation series solution to the 
physical problem. A modern computer makes it pos- 
sible to obtain dozens or even hundreds of terms, 
which contain sufficient information about the analyti- 
cal structure of the solution. Second, analyze the 
singularities of the perturbation series solution. Fi- 
nally, recast the series in order to obtain an ana!ytical 
expression for the solution. In the second and third 
procedures there is a variety of devices to be used such 
as Ratio method, Neville table, PadC method and some 
special transformations. 

This paper uses computer-extended series to deal 
with the velocity and temperature distribution in the 
middle portion of a horizontal pipe with different end 
temperatures, and analyzes the heat transfer through 
the pipe. Bejan and Tien [4] studied this problem and 
presented a second-order perturbation solution in 
Rayleigh number, Rn (based on end-to-end tempera- 
ture differences) for the velocity, temperature distri- 
bution and heat transfer. They point out that their 
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solution is valid only when the Rayleigh number is The variables and parameter in equations (l)-(3) have 
very small, and for cases in which the Rayleigh number been nondimensionalized as 
is not small, the higher-order terms beyond the second 
will be needed. As a matter of fact, in many real I = r*Jro, z = z*/ro 

problems the Rayleigh number is quite large rather ii = u*rO/a, v = t’*ro/a, 
than small. Therefore, we extend their second-order 
solution to 47th order and obtain a 24-term Nusselt T = (T* - T:)/‘(T2 - T:], 

number series in Rd. We further improve the utility of 
the series by analyzing the singularities of the series 
with Pad6 and Ratio methods [S]. We obtain an Ra = g/?r; (Tz - T:)/(m) 

analytical expression for the Nusselt number, valid in . . . . _ 

follows : 

ws = w*r,/a 

p = P*r~/(~ffv), 

a = k/W,) 

CW 

WI 

(3c) 

(3d) 

all ranges of Rayleigh numbers (0 < Ra < x). Finally, where the quant&es denoted by an asterisk represent 

we adopt Bejan and Tien’s technique to estimate the the dimensional variables of the problem. p, Y and k are 

effect of the ends of the pipe on the heat transfer by density, kinematic viscosity and thermal conductivity. 

matching the first-order core solution with an integral V* is the Laplace operator in cylindrical coordinates 

solution for the flow and temperature in the end 
region. We find that the effect is very strong as Ra 
increases. (4) 

2. EQUATIONS AND PERTURBATION SERIES The Boussinesq approximation has been used in the 

The system of coordinates, r, 8, z and velocity 
vertical momentum equation 

components, U, v, w are indicated in Fig. 1. T and P 
stand for fluid temperature and pressure, respectively. P = Pl Cl - P(T* - WI (5) 

The steady-state governing equations are where fl is the coefficient of volumetric thermal 
expansion. The boundary conditions are 

(1) u=v=w=O atr=l (ha) 

1 

( 

au l! au 7 
lJ* 

pr 
~z+__..+w~__ 

r do r J 

3 
= _._C!??sin@ 

av 

a*T i a*7- air 
z;“+;;;Z=Cr; atr= 1. (6b) 

+R~(sine)~-~+V2~-~-~~ (2a) Where C is a measure of circumferential thermal 
resistance of the wall relative to that of the fluid 

1 c au l’ at) au uv 

> 

3 
pr uar+--+waz+- 

r 8 
= -%ose 

r av 
(7) 

+Rn(cos0)7-~~+V”o+~~-~ (2b) If C + E the wall is adiabatic and if C + 0 the wall 
is isothermal. If we assrtme that in the middle portion 

1 

-i 

aw ,? aw ap 
Pr 

u I + .F g + w z = - z + V’w (2~) 
) 

of the pipe - the core region - the flow can be 
considered as fully developed, i.e. 

1’ dT 
ug+;iB+wg=v2T. (3) 

au ac c!w 

~=~=~= 0. (fu 

FIG. 1, Natural counterflow in a long horizontal pipe with ends maintained at different temperatures. 
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Then we introduce the stream function I(/ 

l a+ ati u=-- 
rat?’ v= -ar. 

The governing equations become 

+ Ra sin 0 g 

ia$T ia+aT 
V2T = ;%; - rdras + w:. 

The boundary conditions are equation (6b) and 

w 
$=-=w=O atr=l 

ar 

(9) 

(lOa) 

(lob) 

(lOc) 

(11) 

Now we expand $, w, and T into power-series in Ra 

(124 

Wb) 

WC) 

where S is a resealing parameter which is used to avoid 
overflow during the computation on the computer. 
Substituting the expressions (12) into equations (10) 
and equating terms containing the same power of 
Rayleigh number, we obtain the following set of 
equations 

v4$,=;“$o ( ;g+p; v2’+& > 
! aTI-, + cose-- 

1ar,_, 

& 
sin&- 

r de ) 
.S (13a) 

-+j$; 6 
C 

l ati, as-, l a+, awl-, 
nO ratI dr r dr a0 ) 

dT*- 1 + sin e - 
az 

.S 

la’“aT1-” ;ata;o-” 

r de ar 
I aT,-” + c W”T’ 

n=o 

The boundary conditions are 

w, 
11/, = ar = wt = 0 at r = 1 

1 a2T, 

r2 a82 
+!?L& at,.=1 

aZ ar 

(13b) w2,_, = k2’-, C 1 sin (2i- 1)6 
,=, j=l 

x r2j-, . A 
21-l.i.j 

I 41-l 

(134 

T2,_, = k:, c 1 sin(2i-1)fI 
,=I j=1 

where I is any positive integer. For w,, we need another 
boundary condition. From the geometry of the flow, w 
should be antisymmetrical with respect to the horizon- 
tal plane, i.e. w(r sin 6) = - w[r sin ( -e)], implying 
V2w=0 at r=O. Therefore, we obtain V’w,=O at 
r =0 as another boundary condition for w,. It is easy to 
show that $, would have non-zero solutions only when 
I is an even number, and w,, T, would have non-zero 
solutions only when 1 is an odd number. Then the 
equation (13) becomes 

^ 
w2~I_n~_l + sine +.s (I&,) 

V27-2r_1 = ‘? 
“=, 

!!!!!!a _ f?h; T20_n,_, 
r as ar ) 

27-0 
+ WZI-1%’ (l4c) 

It is also easy to show that the zeroth-order solutions 
are 

*o = 0 

we = 0 

To = k,z + k2 

(l4d) 

where k, and k, are undetermined constants which 
depend on the boundary conditions at the ends of the 
pipe. In fact, k, is the zeroth order temperature 
gradient aT,/dz. Later, it will be shown that k, 
strongly depends on the aspect ratio of the pipe and 
Rayleigh number. 

In general, the solutions of the equations (14) are of 
the following form : 

I 41+1 

,J2, = kf’ 1 1 sin (2ie). r2j-’ . E2,. i. j (15a) 
,=I j=1 

I 41-2 

x r2je1 .C2,-,.i,j 

Then 

I 41-l 

V4,j2, = k:’ 1 1 sin (2i0) 
,=I j=l 

x r2jm2 G,,, i. j 

(15b) 

(W 

(164 
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x r2jm2 . F,,, i, j (16b) 

1 41-3 

V2~2r_1 = kf’-’ 1 1 sin (2i- l)e 
i=l j=[ 

x r’j-’ B21-,,i, j (16~) 

I 41-Z 

V2Tzr_, = kf’ c 1 sin(2i-1)6, 
i=l j=l 

x r2j-’ D2,_,,i, j (164 

We use double-precision to compute all the coefficients 
A, B, C, D, E. F, G from I = 1 to 1 = 23 on the IBM 
370/3033 machine. Using three-dimensional arrays for 
these coefficients, we find the computations limited by 
storage. To overcome this, we map the three- 
dimensional arrays to one-dimensional arrays to save 
the two-thirds of each three-dimensional array that is 
not used during the computing. 

The Nusselt number Nu is defined as 

Nu Q 
k,= nr,k( Tz - T:)k, 

x rdrdti = 1 - ‘2 Nu, (17) 
I=1 

where Q is the heat flux across the pipe. 

Nu, = i i I;: ’ ;g12 4’;-l+ 3 

n=l i=l 

X 
A2”-,.i.j’C~(1-n)+l.k.m~, 

2(j+m) 
t. k 

6i. k = 

0 i#k 
1 i=k 

The temperature distribution on the pipe wall is 

T(l, 8, z)/k, = z + F A, (19) 
,=I 

where 

I 41-I 

A,= c c sin(2i-l)ti,C,,_,, i,j (20) 
i=l j=l 

Then R, will be the radius of the convergence of (21) 
which is 

The solution (2.15) gives a four-celled flow pattern (see 
Fig. 2). As the order increases the more cells flow 
pattern (corresponding to higher order solution) will 
be added to the basic four-cell flow pattern. 

We calculate the coefficients of the Nusselt number 
series (17) and rewrite (17) as 

R, = 0.1017 with 0 = 2.468. (23) 

Thus the series (21) will diverge when X > 0.1017 as 
indicated by Fig. 3. But this pair of singularities do not 
have physical meaning; therefore, we may extend the 
utility of (21) by mapping them away. To do so, we use 
the following transformation 

NU 
- = : C,X” 

k, “=O 
(21) Y= Jl(x-X,:(X-X3,. (24) 

where X =(Rak_,/S)2. The coefficients C, are shown in This maps the singularities to infinity in the Y-plane 
Table 1. Note that when n=l, the equation (21) is and maps infinity in the x-plane to a finite point in the 

Second order Fourth order 

FIG. 2. Pipe cross-section showing streamlines of the second- 
order and fourth-order flow pattern. 

exactly Bejan and Tien’s solution [4]. From now on we 
shall concentrate on the heat transfer problem and 
analyze the Nusselt number series. 

3. EXTENSION OF THE UTILITY OF THE 
NUSSELT NUMBER SERIES 

We have extended Bejan and Tien’s two-term 
solution to 24 terms for Nusselt number. But this series 
(21) still has limited utility for description of the 
physical quantity of interest because of its limited 
radius of convergence. Figure 3 shows that the series 
diverges when X > 0.1. The higher order coefficients, 
C,, however, contain a great deal of information about 
the analytical structure of the solution. We may find 
the analytical structure of the series by analyzing the 
singularities of the series. 

The signs of the series (21) soon show a repeated 
pattern of five 

++--+-+-, -+-++, -+-++, 
- + - + +, - . . 

This indicates that the series (21) has a conjugate pair 
of singularities nearest the origin in the complex plane 
ofXr(Rak,/S)‘. Padi approximants to the series (21) 
and d/dx In (21) show that this pair of singularities is 
located at 

X, = -0.0795 k 0.0634. i. 

If we rewrite equation (22) as 

(22) 

X = R e * 1”. c c 
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Table 1. Coefficients of Nusselt number series 

-- 

N 
% % %I f Il+l% 

1 1.0000000D 00 1.0000000D 00 1.0000000D 00 

2 1.5190972D 01 1.5443385D 01 2.5898557~ 01 2.5898557~ 01 

3 -1.5301212D 01 1 .I911 683~ 01 5.9398128D 01 2.2934927D 00 

4 -3.5833736D 02 1.1814608D 01 1.4861865D 02 2.5020763D 00 

5 4.8657932D 03 1.135546,7~ 01 3.8337272D 02 2.5795734D 00 

6 -4.0783066~ 04 1.1281950~ 01 1.0031135D 03 2.6165491~ 00 

7 2.32970501) 05 1.1146633~ 01 2.6448724D 03 2.6366630D 00 

8 -4.8096931~ 05 1.1098503~ 01 7.00.5'1916D 03 2.6485935~ 00 

9 -8.7932865D 06 1.1040237D 01 1.8606680D 04 2.6561272D 00 

IO 1.4786326~ 08 1.1007532D 01 4.9514562D 04 2.6611175~ 00 

11 -1.3468506~ 09 1.0974554D 01 1.3193407D 05 2.6645508D 00 

12 7.3462274~ 09 1.0950583~ 01 3.5186637~ 05 2.6669865D 00 

13 1.2933260D 09 1.0927924D 01 9.3904669D 05 2.6687594D 00 

14 -5.8659099~ ii 1.0909037~ 01 2.5073283~ 06 2.67007841) 00 

15 8.0791023~ 12 1.0891421D 01 6.6972712D 06 2.6710787D 00 

16 -6.6413017D 13 1.0875692D 01 1.789410SD 07 2.6718501~ 00 

17 2.8083924~ 14 1.0860964~ 01 4.7821181D 07 2.67245'45D 00 

18 1.4883696~ 15 1.0847354D 01 1.2782289~ 08 2.6729347D 00 

19 -4.4741005D 16 1.0834516~ 01 3.4171167D 08 2.6733214D 00 

20 5.1723856~ 17 1.0822442~ 01 9.13612950 08 2.6736369~ 00 

21 -3.6539754D 18 1.0810978~ 01 2.4429073D 09 2.6738975D 00 

22 8.5260432~ 18 1.0799988~ 01 6.5326156~ 09 2.6741152~ 00 

23 1.9197898~ 20 1.0788735~ 01 1.7470169D IO 2.6742992D 00 

24 -3.5401249D 21 1.0774276~ 01 4.6723203~ IO 2.6744563D 00 

Y-plane. After the transformation the series (21) 
becomes 

Nu 23 

k, = “=(I 

c &Y” 

where the g. are new coefficients shown in Table 1. We 
again form Padt approximants to (25) and d/dy In (25) 
to analyze the singularities of (25). We find two 
singularities on the real axis of the Y-plane, at 1.000 
and - 1.677. The nearest singularity lies at Y = 1, 
which is consistent with the fixed sign pattern of the 
coefficient gn. Therefore, the series (25) has unity radius 
of convergence, which corresponds to X + y_ or Ra + 
x. In principle, the series (25) can be used in the case of 
Ra + r*. In a practical sense however, the utility 
of equation (25) is still limited because of its slow 
convergence when Ra gets large or Y -+ 1. In order to 
extend the utility of equation (25), we need to know the 
nature of the singularity at Y = 1. Before we analyze 
the nature of this singularity, we use an Euler transfor- 
mation to map away the nonphysical singularity on 
the negative axis to reduce its influence on (25). The 
Euler transformation Z = Y/( Y + 1.677) maps the 

singularity at - 1.677 to infinity in the z-plane and 
maps the singularity at 1 to 0.3736. In the z-plane 
the series (25) becomes 

100 
I I I 

IO? 10-1 100 IO' 
(Ra k,hf 

FIG 3. Nusselt number Nu/k, as a function of (Rak,/S)2 in 
different order approximation, i.e. second-, third-, fourth- and 

fifth-order approximation. 



Nu 23 
- = ";of"z" 
k, 

(26) 

where the fn are new coefficients shown in Table 1. We 

form Pade approximants to the new series (26) and 
djdz In (26), and find that the nearest singularity is now 

located at Z, = 0.3737. The Domb-Sykes plot (Fig. 4) 
and Neville table to DombSykes ratios also suggest 
that the nearest singularity is located at Z, = 0.3736. 

In order to analyze the nature of this singularity we 
suppose 

as Z ---) Z,. (27) 

Then the logarithmic derivative of (27) will become 
cc/(Z-Z,). Therefore, the residue of the Pade appro- 

ximants to d/dz In (26) will give an estimate of the 
exponent CC This value is about -0.98. On the other 
hand, from the Ratio method we have the sequences 
for series (26) 

G’8b) 
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FIG 4. Domb ratio in the z-plane. 

A Neville table for equation 28b gives the estimates ofa These determine the values of k, and kz 
as -0.986 and -0.987 from quadratic and cubic 

extrapolations, respectively. Therefore, we may make a k, = r,/L 
(33) 

mimic function for series (26) k2 = 0. 

F = (1 - &)-‘B(Z) 
where B(Z) is an extracted series 

(29) Then(29);;;c (, _ z 

0.3736 

!’ 

B(Z) (34) 

B(Z) = 5 e,Z". 
n=O 

(30) 

We may use Pade approximants to represent B(Z) 

B(Z) = (1+0.145 x 102Z-0.108 x 103Z2 + 0.174 x 104Z3 - 0.159 x 105Z4 + 0.669 x 105Z5 
-0.149 x 106Z6 + 0.186 x 106Z7 - 0.129 x 106Z8 + 0.455 x 105Zv - 0.648 x 104Zro 
+0.168 x 103Z1’)/(l-0.880 x 1O’Z + 0.105 x 103Z2 - 0.772 x 103Z3 
f0.288 x lo4 Z4 - 0.589 x lo4 Z5 + 0.682 x lo4 Z6 - 0.437 x lo4 2’ 
+0.141 x lo4 Z* - 0.180 x lo3 Z’ + 0.364 x 10’ Z”) (31) 

4. EFFECT OF THE END BOUNDARY CONDlTIOiL 
OR THE SOLUTION 

Notice that we have not considered the boundary 
conditions in the z-direction so far, and there is an 
undetermined constant k, in the solution for the 
Nusselt number (17, 29). The value of k, depends 
strongly on the end boundary conditions of the pipe. If 
we suppose the aspect ratio extremely small ro/L + 0, 

then the end boundary condition may be considered as 
follows : 

T(r, 0, 0) z 0 T(r. 8, L/r,) z 1. (32) 

where Y 
z= 

Y + 1.677 

X y=-----_-- 
JCW -Xc) w - x31 Wb) 

x = Ra(rolL) I 1 ’ 
s . (35c) 

Equation (34) is an extreme situation when Ra is fixed 

and ro/L approaches zero (see Bejan and Tien [4]). But 
in the real problem, the aspect ratio is fixed and 
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Rayleigh number is becoming very large. In that case, (a), = 6 = 0 (39a) 
the end regions of the pipe become very important, and 
the constants k, and k, depend very strongly on the (“)z=6 (39b) 

Rayleigh number as well as the aspect ratio of the Rak, 
pipe. (w),=~ = T(r3 - l)sine (39c) 

In order to estimate the effect of the end condition of 
the pipe on the heat transfer, we have matched the first- 
order core solution with an integral solution for the (T),=, = $(rs-3r3+4r)sin0 + k,z + kz. (39d) 

flow and temperature field in the end regions. 
We define the end region length 6 as that segment of 

the horizontal enclosure outside which, Z > 6, the core 
solutions are valid. The integral energy and momen- 

Substituting expressions (38) into the integral equa- 

turn equations within the end region are 
tions (36) and (37) yields 

101.T,Oz’ (g)E=OdrdB = IO1 Ioz= ($-)_drd6+ 1; 1; I;;;(rg)drdBdz 

6 2X 1 2n - IS (UT),,, d0dz - ss (wT),=,drdB 
0 0 0 0 

1 2n 

l- 
ss s 

‘UT 
-drdedz 

00 0r 
(36) 

Ra 
ss 0 1 0 2n 

sine(T),=,drde = 

+ 

+ [(V2w),=i - (v ‘4,=01 &dz 

1 2n 
- ss [(v~u),=, - (v2 4,=01 drd@ 

0 0 

+ (37) 

Then we have to select reasonable profiles for the 
velocity and temperature distributions inside the end 
region. We choose the following profiles 

I.,,,,$$ + 6k, - 7 = 0 

6 = 0.87057. 

(40) 

(41) 

3Rak, z 
u=~~ 1-i (2r-r2-l).sin0 

( > 

We assume the temperature field is symmetric about 
(38a) the center of the pipe, i.e. 

3Rak, z 

v=326 ( 1 
1 - i (r4 - 4r2 + 4r - 1) sine 

WI which yields 

(38~) 
(42) 

T=,T,-,k+;-($]+k,z 

Combining equations (42) and (40), we obtain 
(38d) ak: + bk, + c = 0 (43) 

where a = 8.2269 x 10T4 Ra2, b = 6 + 2.2973 (L/r,), 
which satisfy the continuity equations (1) and boun- c = - 2.2973. Obviously, k, very strongly depends on 
dary conditions and match the following first-order the Rayleigh number Ra and the aspect ratio ro/L. 

core solutions From equation (43), if ro/L + 0 while Ra is fixed then 
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k, -+ r,,/L. This is the extreme situation in which the mental study [6] shows that the core flow is .&II not 

core flow pattern dominates the heat transfer through fully developed at r,/L = 0.056. We cite their results in 
the pipe. The equation (29) combined with (43) and Fig. 5. 
equation (34) are shown in Fig. 5. 

~c~~uw~~~ge~~fs--The author thanks Professor Milton 
Be~on and Ten (1978) Van Dyke of the Mechanical Engineering Department, 

. Klmuro ond Bejan (19801 
Stanford University, for helpful advice. The author also 

experiments G./L 3 0056 thanks Professor I-dee Chang of the Aeronautics and Astro- 
nautics Department, Stanford University, and Professor C. L. 
Tien of the Mechanical Engineering Department, University 
of California, Berkeley, for many valuable comments. 

3. 

Id 
Ra(r,/Ll 4. 

FIN;. 5. Nusselt number vs Rayleigh number according to 
equations (34) and (29) combined with (43). 5. 

Finaliy we should point out that we have assumed 
fully developed flow in the middle portion of the pipe. 
This means that r,/L must be small enough so that our 

6, 

assumption makes sense. Kimura and Bejan’s experi- 
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DEVELOPPEMENT NUMERIQUE DE SERIE: CONVECTION NATURELLE DANS UN 
TUBE HORIZONTAL AVEC DIFFERENTES TEMPERATURE AUX EXTREMITES 

R&uni--Le d~veloppement a trois termes de Bejan et Tien est itendu g 47 termes selon le nombre de 
Rayleigh pour les distributions de vitesse et de tempbature dans la portion mMiane d’un tube horizontal 
avec une paroi adiabatique et des extrtmit6s chauffkes dil%emment. On examine la sdrie pour le nombre de 
Nusselt et on itend son utilite en analysant ses singularitts. On estime aussi l’effet des extrdmitb en testant la 
solution du noyau de premier ordre avec une solution int6grale pour 1’8coulement et la temperature dans la 

region terminale. 

DURCH COMPUTER ERWEITERTE REIHENENTWICKLUNG: FREIE KONVEKTION IN 
EINEM LANGEN HORIZONTALEN ROHR MIT VERSCHIEDENEN ENDTEMPERATUREN 

Zusammenfassung-Fiir die Geschwindigkeits- und die Temperaturprofile in der mittleren Region eines 
langen horizontalen Rohres mit adiabaten W&den und unterschiedlich beheizten Enden wurde die 
dreigliedrige Reihe von Bejan und Tien auf 47 Glieder in der Rayleigh-Zahl erweitert. Die 
Reihenentwicklung der Nusselt-Zahl wird untersucht und ihre Anwendbarkeit durch Untersuchung ihrer 
Singularitlten erweitert. Der EinfluR der Enden wird durch Anpassung der Ldsung fiir den Kern, einer 
Liisung 1. Grades, an die integrale L6sung fiir StrGmungsgeschwindigkeit und Temperatur in den 

Endgebieten abgeschitzt. 
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HCCJIEjJOBAHBE ECTECTBEHHOR KOHBEK4~~ 3 fiJIkfHHOfi rOP~3OHTA~bHO~ 
TPY6E C PA3HbIMi-i TEMIIEPATYPAMM HA KOHUAX C nOM0UbKf 3JIEKTPOHHO- 

BbI‘lHCJIHTEJIbHO~ MAIllMHbI 

AHHOTPUMSI-)$IH onpeneslemr npoc$tfnefi CKO~OCTH w TeMlle~TypbI B UeHTpanbHOfi qaCTIi LIJIE~HH~~~ 

I-OpH30HTanbHOi-i Tpy6bI C aLlIfa6aTliYeCKHMH CTeHKaMN H pa3HbIMEi TeMIlepaTypaMH Ha KOHUaX TJJeX- 

YneHHoe pa3nomeHHe,npennomeHffoe 6enEaHoM H TbeIiOM, o6o6weHo Ha 47 weHoB no recny Penen. 

Mccnenyewn pa3noxesse B pan no rucny HyccenbTa H na 0cHoBaHm aHane3a cmrynapHocTeti 

paCUIHpreTCR o6nacTb et-0 IlpHMeHHMOCTH. TaKxe DaHa OUeHKa KOHUeBbIX @Ji@KTOB UyTeM COUO- 

CTaBneHWIl ~~eHHRnepBOrOnOprnKannRueHTpanbHOiiYaCTuCElH7erpanbHbtM~meHueM~nTeYeueR 

n TemepaTypbI Ha Komax Tpy6bI. 


